Dynamic Analysis: Testing

John Businge

john.businge@unlv.edu

Introduction

* Dynamic Analysis verifies properties of a system during
execution/runtime.

* Testing Analysis is one example of Dynamic Analysis

* Unit tests, integration tests, system tests, and acceptance tests use dynamic
testing

Testing in the Book

 Tests are your life insurance! (OORP, p. 149)

* Tests are essential to assuring the quality of refactoring/code change
activities.

e Write Tests to Enable Evolution (OORP, p.153)
* Good tests can find bugs in your artifact
» Tests can also detect unwanted behavior

* You can also write tests to understand a part of a system (OORP,
p.179)

* Test the Interface, Not the implementation (OORP, p.171). This is
essentially Black-box testing.

Unit Testing

* In this session, we focus on Unit Testing.
e Unit testing focuses on the smallest testable parts of an
application called units (e.g., a class method or function)
* There are other types of testing (Integration, Performance,
Security, etc.)

* [t does not mean that Unit Testing is more important, but
those are the tests we can more easily automatize and
benefit from tool support.

Quality of a Test Suite

* How do you know if your unit test cases are good enough?
* Are they really testing the application?
* When do we stop testing?

Solution: Test Coverage!

Test Coverage

Number of Covered Items

Coverage = X 100%

Total number of items

* Examples:
e Statement (Line, or Code) Coverage.
e Branch (Condition) Coverage
e Path Caverage
* Mutation Caverage

Example: a function to test

int foo(int input, bool bl, bool b2, bool b3) {
int x = input;
int y = 0;
i1f (bl)
X++;
1f (b2)
X==;
1f (b3)
Y=X7

return y; ;;7
}

Statement/Line/Code Coverage

Test Case(s)

ASSERT foo(0, true, true, true) == 0;
int foo(int input, bool bl, bool b2, bool b3) {
int x = input;
int y = 0;
if (bl)
X++;
if (b2)
X==;
if (b3)
Y=X7
return y; [;;7
}

Statement/Line/Code Coverage

Test Case(s)
ASSERT foo(0, true, true, true) == 0;

int foo(int input, bool bl, bool b2, bool b3) {

100% Statement Coverage
| |

y

Statement/Line/Code Coverage

Test Case(s)
ASSERT foo(0, false , true, true) == -1;

int foo(int input, bool bl, bool b2, bool b3) {

§x100% - 88.9%

M% Statement Coverage ‘

y

Branch/Condition Coverage

Test Case(s)
ASSERT foo(0, true, true, true) == 0;

int foo(int input, bool bl, bool b2, bool b3) {

if (bl)

if (b2)

if (b3)

S e 92
~ return y;
}

50% Branch Coverage
| |

Vv

Branch/Condition Coverage

Test Case(s)
ASSERT foo(0, true, true, true) == 0;
Assert foo(0,false, false, false) == 0;

int foo(int input, bool bl, bool b2, bool b3) {

“ 100% Branch Coverage “

Vv

Path Coverage

Paths for three “if” each can be either true (T) or false (F)

r @
i F = T F | F T F

8-Paths

F

Path Coverage

Test Case(s)
ASSERT foo(0, true, true, true) == 0;
ASSERT foo(0,false, false, false) == 0;
3 U 25% Path Coverage

-
AN

Mutation Testing

The more killed
mutants the better

Number of Killed Mutants
Total number of Mutants

Mutation Coverage = X 100%

Mutation Testing: Small Example

Original

Test Case

,l

int f (bool a, bool b) {
if(a && b) return 1;

else return 0;

}

4

Mutant

void testf () {

assert f (true, true)==1;
assert f(false, false)==0;

}

r

int f (bool a, bool b){
if(a || b) return 1;

else return 0;

}

4

Mutant Survives
the Test Case

Mutation Testing: Small Example

Original Test Case l
int f(bool a, bool b) { void testf () {

if(a §§ b) return 1; assert f (true, true)==_i

TS e) assert f(false, false)==0;
) 7 }

Mutant Missing Assertions that .‘

s Sl el e Could Kill this Mutant

if(a || b) return 1;

assert f(false, true)==0;

else return 0;

\ assert f (true, false)==0;

4

Mutation Coverage

* Assess how good your test cases are at catching faults by introducing
defects into the source code.

* More reliable metric to validate test suite effectiveness.

* In recent years, mutation testing has been more prominent in
academia and less in industry.

Testing Coverage for the Project

* It is required to show coverage for your Project (in both the
Intermediate and the Final Report)

* At least Statement Coverage, but Branch Coverage is better.

* You should show the chosen coverage before the refactoring/change and
after (where hopefully you also added new tests).

* There is no set coverage limit to reach for the project.

e But if your project has very low coverage, you better have a good
explanation for that.

* Focus on increasing the coverage for the system parts that will be
affected by your refactoring/change.

