
Software Product Design and Development II
Metrics & Visualization 

John Businge
John.businge@unlv.edu



“You can’t manage what you can’t measure.” 
– Unknown author*



Introduction

•Most metrics tools include some visualization to show a large 
volume of data.
• Data is tedious to interpret, and visualizations help you to 

analyze different measurements simultaneously.
•When different metrics are combined properly one can 

deduce which artifacts represent potential issues



Source Code Metrics

• Some common metrics are associated with source code 
and/or object-oriented.

LOC Lines of Code
NOA Number of Attributes
NOM Number Of Methods
FAN-IN Number of classes referenced by this class
FAN-OUT Number of classes referenced by this class



CK Metrics
• Proposed by Chidamber& Kemerer(1994)
• Used a lot in academia (although CBO/LCOM are criticized as 

being outdated)

WMC Weight Methods per Class
DIT Depth of Inheritance Tree
NOC Number of Children
CBO Coupling Between Object classes
RFC Response For a Class
LCOM Lack of Cohesion of Methods



Other Metrics

•MOOD – Six metrics (Method Hiding Factor, Attribute Hiding 
Factor, Method Inheritance Factor, Attribute Inheritance 
Factor, Polymorphism Factor, Coupling Factor)
• QMOOD – 11 properties mapped to 6 quality attributes
• Community Metrics – Number of Developers, Authorship…

• … and many others.



Metrics are Relative

• A value considered low for one project might be very high for 
another.
• It really depends on the domain, size, and complexity of the 

application.
• Researchers usually take a median value on a project as a 

reference to what is high/low.



UML Diagrams

• (Mostly) The simple and standard way to present an abstract 
visualization of a system
• UML defines 13 diagrams 
• Useful to plan and design reengineer activities



UML Diagrams: Attention

• In the FINAL Report, it is required for you to present a Class Diagram 
focusing on the reengineered parts
• Both Before and After the reengineer activities
• You may complement with other diagrams IF (and only if) you deem 

important to better explain/describe/reason your reengineer 
decisions/results.



Sample Class Diagram – Patch in apache/kafka
https://github.com/apache/kafka/pull/10704

KAFKA-12791: ConcurrentModificationException in AbstractConfig use by KafkaProducer #10704



Code City
CodeCity is a visualization 
concept for source code.

The source code is shown as an 
interactive 3D city.



Code City
• Packages are “districts”, “neighborhoods,” or “city blocks” 
• Each “building” represents a class \
• Width = Number of Attributes 
• Height = Number of Methods 
• Antennas => Classes with many methods and no 

attributes 
• Parking lot => Classes with many attributes and no 

methods 
• Skyscraper => Classes with a large number of methods 

and has many attributes



JSCity

• JSCity is a CodeCity implementation for JavaScript code 
• Folders are districts, and files are sub-districts 
• Functions are buildings; inner functions are represented as buildings 

on top of their nested function/building. 
• Width = Number of Variables (NOV) 
• Height = Lines of Code (LOC) 
• Blue Color = buildings are named functions 
• Green Color = buildings are anonymous functions. 

(link on the course lesson page)



CodeScene

• CodeScene is a web application for software analytics and 
visualization. 
• Based on the book “Your Code as a Crime Scene”. 
• It fetches your project directly from GitHub. 
•We are going to use the free version on the lecturers here 

(link on the course lesson page, or just type CodeScene in a 
search engine)



CodeScene: Project

• CodeScene is one of the official tools for this course. 
• Because of its web interface, it is multiplatform. 
• For the Intermediate Report, it is required to use CodeScene

as a Visualization tool. 
• Optionally, you can also use other visualization tools. 
• For the Final Report, there is no requirement to use 

CodeScene, but it is encouraged.


