Software Product Desigh and Development Il
Metrics & Visualization

John Businge

John.businge@unlv.edu

“You can’t manage what you can’t measure.”
— Unknown author*

Introduction

* Most metrics tools include some visualization to show a large
volume of data.

e Data is tedious to interpret, and visualizations help you to
analyze different measurements simultaneously.

* When different metrics are combined properly one can
deduce which artifacts represent potential issues

Source Code Metrics

e Some common metrics are associated with source code
and/or object-oriented.

LOC Lines of Code
NOA Number of Attributes
NOM Number Of Methods

FAN-IN Number of classes referenced by this class

FAN-OUT |Number of classes referenced by this class

CK Metrics

* Proposed by Chidamber& Kemerer(1994)

* Used a lot in academia (although CBO/LCOM are criticized as
oeing outdated)

WMC |Weight Methods per Class

DIT |Depth of Inheritance Tree

NOC |[Number of Children

CBO |Coupling Between Object classes
RFC |[Response For a Class

LCOM | Lack of Cohesion of Methods

Other Metrics

* MOOD - Six metrics (Method Hiding Factor, Attribute Hiding
Factor, Method Inheritance Factor, Attribute Inheritance
Factor, Polymorphism Factor, Coupling Factor)

* QMOOD - 11 properties mapped to 6 quality attributes
* Community Metrics — Number of Developers, Authorship...

e ... and many others.

Metrics are Relative

* A value considered low for one project might be very high for
another.

* It really depends on the domain, size, and complexity of the
application.

* Researchers usually take a median value on a project as a
reference to what is high/low.

UML Diagrams

* (Mostly) The simple and standard way to present an abstract
visualization of a system

* UML defines 13 diagrams

* Useful to plan and design reengineer activities

UML Diagrams: Attention

* In the FINAL Report, it is required for you to present a Class Diagram
focusing on the reengineered parts
* Both Before and After the reengineer activities

* You may complement with other diagrams IF (and only if) you deem
important to better explain/describe/reason your reengineer
decisions/results.

Sample Class Diagram — Patch in apache/kafka

https://github.com/apache/kafka/pull/10704
KAFKA-12791: ConcurrentModificationException in AbstractConfig use by KafkaProducer #10704

Code City

CodeCity is a visualization
concept for source code.

The source code is shown as an
Interactive 3D city.

Code City

Packages are “districts”, “neighborhoods,” or “city blocks”
Each “building” represents a class \

Width = Number of Attributes

Height = Number of Methods

Antennas => Classes with many methods and no
attributes

Parking lot => Classes with many attributes and no
methods

Skyscraper => Classes with a large number of methods
and has many attributes

JSCity

* JSCity is a CodeCity implementation for JavaScript code
e Folders are districts, and files are sub-districts

* Functions are buildings; inner functions are represented as buildings
on top of their nested function/building.
 Width = Number of Variables (NOV)
* Height = Lines of Code (LOC)
* Blue Color = buildings are named functions
e Green Color = buildings are anonymous functions.

(link on the course lesson page)

CodeScene

* CodeScene is a web application for software analytics and
visualization.

e Based on the book “Your Code as a Crime Scene”.
* It fetches your project directly from GitHub.

* We are going to use the free version on the lecturers here
(link on the course lesson page, or just type CodeScene in a
search engine)

CodeScene: Project

e CodeScene is one of the official tools for this course.
* Because of its web interface, it is multiplatform.

* For the Intermediate Report, it is required to use CodeScene
as a Visualization tool.

* Optionally, you can also use other visualization tools.

* For the Final Report, there is no requirement to use
CodeScene, but it is encouraged.

